If it's not what You are looking for type in the equation solver your own equation and let us solve it.
19x^2+10x=90
We move all terms to the left:
19x^2+10x-(90)=0
a = 19; b = 10; c = -90;
Δ = b2-4ac
Δ = 102-4·19·(-90)
Δ = 6940
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{6940}=\sqrt{4*1735}=\sqrt{4}*\sqrt{1735}=2\sqrt{1735}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-2\sqrt{1735}}{2*19}=\frac{-10-2\sqrt{1735}}{38} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+2\sqrt{1735}}{2*19}=\frac{-10+2\sqrt{1735}}{38} $
| 7x-3(2x-1)=x-7 | | 7x-6x-3=x-7 | | 7/3m=4 | | 7/3m=14 | | x-0.7x=60 | | -3x-4(4-8)=3(-8x-1) | | 3/7m=14 | | −58−6x+13x=47−58−6x+13x=47 | | 4*x=-20/9 | | 2(5x-39)=4x-18 | | 9k=4k-20 | | -3-2x=x-1 | | (5x-8)/3=(4x-7)/2 | | 2d2-19d+14=-6d | | 6=10^1/x | | 0.3x=25 | | 15x+10x-5=30 | | 8x-0.7=4.9 | | 4x+1=-3/5 | | P=6p+11 | | -24+Y2+2y=0 | | 4.9t^2-9.8t-39.2=0 | | z+10/4=5 | | 10y+3y-4=0 | | (2x+55)+(x-19)+(x)=180 | | |6x-9|=27 | | 4.9t^2-9.8t+39.2=0 | | 20×t=-10 | | 51-3x^2=0 | | 2(x-9)^2=50 | | 18.23+b=62.02 | | 18.23+b=62.2 |